
AD A O 5 R 4 RT G A U T C O L F M N G M N A AYETT E IN - F6 5/A

FUTURME DIRECTIONS FOR DECISION SUPPORT.(U)
I 80 R H BONCZEK. C W HOLSAPPLE DAA629 79-C-01

UNCLASSIFIED ARO-16231.2-EL NL

7 AOA I HOLALl
-EEEEEEEEllllEEEll

lllllllI ;



I 1 4.0 1: 18 125
S136

11- 11112.0

-11111L25 ILAJ~ f 1.6

MICROCOPY RESOLUTION TESTCHR



SECURIT CLASSIFICATION OF IS4G09 eeuE

REPORT DCM N T E w CMPA 7 O nw
I. REPORT MUERf 13 V ACCESSION NO. S./O EN CATALOG NUJMBER

-7 6
TTLf-k- F 5.-bDbREPORT AkPE YES

FUTURE jjIRECTIONS FOR DECISION JIJPPORTO Technical __ J7*

S. PERFORMING ORO. REPORT NUMBER

CIT 11. CONTRACT Oft GRANT NUMBER(@)
SRobert I.Aonczek Contract No.

0= Andrew B.lWhinston -C I-c
I .M AND ADDRESS 'a. PROGRAM ELEMENT. PROJECT. TASIC

0) Purdue UniversityKrannert Graduate School of Management

met West Lafayette, IN 47907
11. CONTROLLING OFFICE NAME AND ADDRESS ~u t

U. S. Army Research Office =n,8
Post Office Box 12211 n. NUMBER OF PAGES
Research Triangle Park, NC 27709 34

14. MONI NOUN AGENCY NAMIE A ADORESS(iI dilfenmnt fffl C00M~irlad OfflCe) 1S. SECURITY CLASS. (of tlii rienr)

unclassified
-- - a-18. DCASFICATION/DWNRAIN

IS. DISTRIBUTION STATEMENT (otteft~.

* J~i~b(Ol DTIC
LdlFAD.AMtEI ELEC T E

AUGi1 1980-
17. DISTRIBUTION STATEMENT (.11 the dobwa eitered in Bloek" ,If Eftereni *e Repeft)

A.
IS. SUPPLEMENTARY NOTES

The view, opinions, and/or firlings contained in this report are those
of the authors and should not be construed as an official department
of the Army position, policy, or decision, unless so designated by
other documentation.

19. KEgY WORDS (Canmi an revuca aide It nac*@*7 md #denfr 6F WOe& ObRIO)

S0. ABSTRACT (Cemthe en rO $1i10 if 000e0e17 IMId I~&ttr b ed .IMbe)
A formal, generic description of decision support is introduced. This

~Irn description views a decision support system as having three principal compon- J
ents: a langugage system, a knowledge system and a problem processing system.

01 Several systems are described which fit the generic DSS idea, but which are
Q> (for the most part) not the customary kinds of systems encountered in business'
&AJ applications. Nevertheless, the concepts and techniques *employed in these

systems can make important contributions to the emergence of more powerful
b~awhss-oriented decision suDoort systems.

O AN 72 1473 EDITO OF0 IWOY< 651 rSLT
C60 9~~~~~~~/ 0102-014* 6601 1 tIASFCTNOFTosPf ~om

caA



FUTURE DIRECTIONS FOR DECISION SUPPORT

Technical Report

by

Robert H. Bonczek

Clyde W. Holsapple

Andrew B. Whinston

U.S. Army Research Office .. - .

Contract No. DA79CO154

Purdue University -.

Approved for Public Release .

Distribution Unlimited:

THE VIEW, OPINIONS, AND/OR FINDINGS CONTAINED IN THIS REPORT ARE THOSE
OF THE AUTHORS AND SHOULD NOT BE CONSTRUED AS AN OFFICIAL DEPARTMENT OF
THE ARMY POSITION, POLICY, OR DECISION, UNLESS SO DESIGNATED BY OTHER

DOCUMENTATION.

(2



FUTURE DIRECTICNS FOR DECISION SUPPORT

Robert H. Bonczek
Assistant Professor of Management

Krannert Graduate School of Management
Purdue University

Clyde W. Holsapple

Assistant Professor of Business Administration
University of Illinois

Andrew B. Whinston
Professor of Management and Computer Science

Krannert Graduate School of Management
Purdue University

Research Supported in Part by Army Grant Number DA79C0154

The authors are indebted to the referees for comments on
our earlier draft.



Abstract

A formal, generic description of decision support systems is intro-

prrc~l opnns agaesse.akoldesse nduced. This description views a decision support system as having three

polmprocessing system. Several systems are described which fit the

gnrcDSS idea. but which are (for the most part) not the customary

kinds of systems encountered in business applications. Nevertheless, the

concepts and techniques employed in these systems can make important

contributions to the emergence of more powerful business-oriented decision

support systems.



1.0 Introduction

This presentation commences with a formal, generic description of

decision support systems (DSS) which will guide the remainder of our

study. This description stems from a decision making framework [2]

and from the classification scheme introduced in a companion paper [5).

The generic description views a DSS as having three principal components:

a language system (LS), a knowledge system (KS), and a problem processing

system (PPS). We proceed to examine several computer-based systems

which adhere to the generic DSS description. However, most of these

systems are not business oriented and some clearly do not lie within

the most prevalent category. These various systems are addressed

from the angle of identifying techniques and concepts which can be used

to enhance present-day, business-oriented decision support systems like

those reviewed in C 51.



.1Language System

k An earlier paper E 5] surveyed systems which have models incorporated

into them. Even though the descriptions of such systems in the litera-

ture typically pay but scant attention to the languages used to directI retrieval and computation, such languages were recognized in the Xerox case

[161. This served as the basis for a classification scheme which stressed

the distinction between languages for retrieval and languages for directing

computation. It was emphasized that languages for retrieval could be

utilized by either the human user or a model. Languages for directing

computation were presented from the standpoint of being used by the human

elements of a decision making system. However. it is certainly imaginable -

that one mechanical DSS could direct another mechanical DSS; for the

present we shall ignore this possibility.

We shall refer to a language system (IS) as the sum total of all

linguistic facilities made available to the decision maker by a decision

support system (see Figure D). A language system may encompass either

or both retrieval languages and computational languages. A language

system is not concerned with the interfacing of models and data. As indicated

in [5) , a user's interface language could be so designed that the

user is unaware of whether he or she is directing a retrieval or a modeling

process (e.g., categories G. H, 1, or L in [51).

A language system is characterized by the syntax which it furnishes

to the decision maker, by the statements. commands, or expressions which

* it allows the user to make. Thus a language system is a vehicle which

allows the decision maker to express himself. but at the same time it limits

the permissible expressions. We say that an IS is a vehicle in that it is

a modt. of conveyance, not of material. but of information.



2

1.2 Knowledge System

Unless it contains som knowledge about the decision maker's problem

domain, a decision support system is likely to be of little practical

value. Indeed a good deal of the power of a decision support system

derives from its knowledgeability about a problem domain (e.g., banking).

This knowledge typically includes large volumes of facts vhich the decision

maker has neither the time, nor the inclination, nor the opportunity

to absorb into his own memory. But certain subsets of this volume of

facts are important to a reasonable or good decision in the face of a

particular problem from the problem domain.

We shall refer to a decision support system's body of knowledge

about a problem domain as its knowledge system (KS) (see Figure 0. in

the systems described in C5,the KS consisted of what were termed data

files or data bases. In the original descriptions of such systems in

the literature the precise nature of their knowledge systems typically

is left unexplained. That they possess'some sort of KS is unmistakable.

and sometimes the kinds of data held in the KS are detailed. But the

crucial issue of how that data is organized is left unaddressed, perhaps

due to space limitations.

Knowledge represented in a KS must be retained in an organized, sys-

tematic manner. There are a variety of knowledge representation methods

31~, [21J. The knowledge representation method utilized by a particular

knowledge system may be thought of as R set of rules according to which

knowledge is expressed for purposes of retention within the decision support

* system.



3

Decision Support System
I

user if - Language

ii Ls

Figure 1. Language System (LS)

II

Decision Support System

I

II

User Language IKnowledge
for Stating Problems 1 about Problem Domiain

LB KL

Figure 2. Language System + KInoledge System (KS)II



1.3 Problem Processing System

The main function of a decision support system is to take strings

of symbols organized according to IS syntax (problemn) and to take strings

of symbols organized according to KS representation rules (problem domain

knowledge) and to produce information that supports (enhances or makes

possible) a decision process. To do so there must be a mediating mechanism

between expressions of knowledge in the KS, and expressions of problems in

the IS. We refer to this mediating mechanism as the problem processor or

the problem processing system (PP'S).

Figure 3a provides a 'bird's eye view' of the generic description of

decision support systems. It is the P1'S which has one or more of the

seven abilities E2)] required for decision making. A more detailed repre-

sentation appears in Figure 3b, where some of the PPS's potential abilities

are specified.



User--apLangge 4-* nterace Knowedg

(Deciion ake5

User ~ ~ a LaGenee DSS:- Onervcewr~Kowe

User LSInformation CollectionjK
Model Formulation
Problem Recogn~tion-

Analyl .......

b. Generic DBS: Detail

Figure 3. Generic DSS



1.4 Decision Support Systems: Human and Computer

Referring to Figure 3a, a close analogy may be drawn between a

computer-based decision support system and a human-based decision support

system. The former is implemented vith a computer, whereas the latter is

implemented with staff personnel or human consultants. In each instance,

however, the decision support system must contain an IS, KS. and PPS.

In the computer-based case the PPS is computer software. The PPS in

the human-based case consists of the mental skills of staff ('human soft-I ware'). If decision support is to be provided, the software must be able

to understand the decision maker's requests as stated in some language

and it must be able to extract pertinent information from some available

pool of knowledge about the problem domain. The function of the software

(be it human or computer) is to interface these two so as to produce an

answer to the problem posed by a decision maker.

In same systems, interfacing software may be simple, whereas it may

be quite complex in others. On another dimension some software may be

able to accept statements of problems in many languages; other PPS may be

more specialized, accepting statements in one language only. One yet

another dimension. some software interfaces are specially constructed to

access knowledge of one problem domain only. Other PPS have knowledge of

many problem domains (i.e.. they can interface with many knowledge systems).

On still another dimension. some problem processing systems may have models

embedded within them (e.g.. Potlatch, Banking System in L )) Other PPS

may be separated from modules which are stored in the KS, but the PPS

'knows' how to use these to formulate models. This latter kind of PPS is

along the lines of Simon's "general strategies" discussed in £18].



7-7

In both computer-based and human-based decision support systems there

is wide variation in the nature of the language used to direct the decision

support system. In some decision support systems of each type there is the

possibility of the PPS misunderstanding the intention which the decision

maker is endeavoring to convey through the available language system. There

are decision support systems of each genre which have interactive language

systems. That is, the decision support system's PPS is permitted to query

the decision maker for further information in order to clarify what it

recognizes as ambiguity in the decision maker's initial statements. Thus

in a decision support system of this type communication via the LB is not

a one-way avenue, rather the LS is a two-way avenue through which the

decision maker and the PP'S can interact.



2.0 The Shape of Systems to Come

Although most were not developed with business applications in mind,

the systems described in the remainder of this paper do fit the generic

pattern of a DSS displayed in Figure 3a. (As an exercise the reader can

verify that systems reviewed in 5 5] also fit the pattern.) The systems

presented here have certain novel features which are not encountered in

typical business-oriented systems. The descriptions given here are

intended to provide overviews.

The first system discussed was specifically devised to aid managers

in the model formulation activity. The next three systems have been drawn

from the artificial intelligence literature. Some fairly general ideas on

problem solving have been developed in the field of artificial intelligence.

Since the ideas of this discipline are oriented towards solving semistruc-

tured or unstructured problems it is useful to explore the basic concepts,

with an eye to their possible applications in the decision support field.

The artificial intelligence systems are often characterized as being

theorem proving systems. Use of the term "theorem-proving"' does not neces-

sarily connote proving theorems in mathematics. It is used in a broad

sense which may be interpreted variously, not only as a theorem to be proven.

but also as a goal to be achieved, a problem to be solved, or a query to

be answered.

Finally there is a description of a decision support system that is

more general than the systems reviewed in [5 3. That is, the system can

be tailored to treat different problem domains such as banking. project

management, corporate planning, etc.



2.1l The IBM Business Definition Language

Here we examine a system for supporting business decisions which is

approached from the angle of a language tO]. The language has been

designed to provide business people with a means for stating their problems

and stating how they are to be solved. This Business Definition Language

(BDL) deals with four kinds of elements: documents, steps, paths, and

files.

A document is a collection of data values organized according to some

form. An example of' a form is an invoice form (with no data values filled

in). A particular group of data values properly written into the invoice

form is an invoice document.

A step is a procedure which converts some input documents into some

output documents. An irreducible step may be viewed as an operator that

is directly available to the user of BDL. Paths connect steps by indicat-

ing that output documents of one step are input documents to another step.

The BDL user commences by stating the types of output documents that

must be produced from a particular c Ilection of input documents. The

user must eventually specify an algorithm (program) for accomplishing

this, in terms of paths connecting irreducible steps. The resultant program

is a Compsite stepin that It is composed of more primitive steps. See

tl0jfor a description of how the program construction process is interact-

ively guided by a series of reductions which break composite steps into

more prtmitive steps, until all primitive steps are irreducible.

Notice that the BDL approach to directing computations differs from

that of systems reviewed in [5 ). In those systems the user either called

for a model (Potlatch) or specified a sequence of models (Xerox). The BDL



10

language systems is more procedural, but more flexible than the language

system of Potlatch or Xerox. It falls nearer to the top of the classification

matrix in [ 5] than do these others. Like these other systems the BDL PPS

contains models (i.e.. irreducible steps or modules). The BDL knowledge

system consists of files.

Input documents to a BDL program may be directly provided by the

BDL user or they may be extracted from files. A file is composed of

documents of a single form which are more or less permanently maintained.

BDL has been described ;0] as having three major "components."

These are the Form Definition Component (FDC), the Document Flow Compon-

ent (DFC) and the Document Transformation Component (DTC). The first

(FDC) specifies the forms of documents which can be used in the BDL

program. The DFC is used to specify the BDL program in terms of paths

and eteps. Irreducible steps are programmed using a language contained

in the DTC co~mponent.

BDL is being developed in order to reduce the cost of labor-inten-

sive application software. The user of BDL is interactively guided

through a process of program (model) construction, beginning with a

composite step and eventuating in a sequence of irreducible steps. (The

issues of branching and iteration in a resultant program are not dealt

with in [10]. However. branching and iteration do occur within irreducible

steps. It is important to observe that the irreducible steps are possibly

complex programs.) The thrust of the BDL development is directed towards

easing the tasks of writing programs in a business problem domain.



2.2 PLA NNE.R

One of the most prominent theorem-proving systems is RLANKER,

[ 20Y which is wnder continuing development. in general, a theorem

proving system consisuts of 1) some language for stating the theorem

to be proven (LS), 2) some collection of axioms, assertions, or formulas

embodying knowledge about a problem domain which the system is concerned

with (KS), and 3) a theorem prover (PPS) which utilizes principles of

logic to endeavor to deduce a stated theorem from problem domain knowledge.

A major point of variat ion among theorem proving systems is the

method for handling knowledge about how to perform the deduction involved

in a particular proof, I.e., knowledge beyond those general principles of

logic which are applicable to any proof. This 'reasoning' knowledge is

not to be confused with the problem domain knowledge mentioned in the

preceding paragraph, since the former is knowledge about how to use the

latter.

As the problem domain knowledge becomes large, the exclusive use of

general deduction principles to prove .theorem tends to bog down, due to
blind examination of the possibly large number of plausable proof proced-

ures for a given theorem; many false starts are involved. indeed this was

the source of some discouragement with the practicality of the theorem

proving field circa 1970 Cl 93. One remedy is to incorporate into a theorem

proving system, more specialized reasoning knowledge, i.e., special deduc-

tive principles which are applicable to a certain problem domain, to a

certain type of theorem, or even to particular theorem themselves.*



12

This specialized reasoning knowledge could be embedded directly into

the theorem prover (PPS) as a set of heuristics. Another conceivable

approach would involve the storage of this knowledge in the form of rules

(in the KS) which would be accessible to the theorem prover for use in

governing the deduction process. The PLANNER approach is to have the sys-

tem's user state this specialized reasoning knowledge (in the LS) at the

same time as (actually, as a part of) the theorem to be proven. The

philosophy underlying the PLANNER, approach is that at the time of stating

a theorem to be proven, the user also has some notion about how to carry

out the deduction. Thus in the PLANJNER language a theorem is really a

program for guiding the deduction process, giving the user control over

how to prove the theorem (i.e., how to use the problem domain knowledge

vis a via the theorem).

The primary problem domain in which PLANNER has been applied consists

of a world of blocks of various colors, sizes, shapes, and locations which

is inhabited by a robot that can act upon those blocks. Questions or

'theorems' posed by a user can request information about the blocks world;

this is obtained either directly from the problem domain knowledge or it

is deduced (inferred) from that knowledge (see Category J in 5]) A

second type of question, problem, or 'theorem' can request a change in

the state of the blocks world. This entails a deduction of whether the

requested change is possible, given the current state of the blocks world

and given the actions which the robot can carry out; these two "ies

are included in the system's problem domain knowledge. A proof of this

second type of theorem results in the execution of robot actions.



13

Decision Maker WPSE

a.System Oriented Towards Analysis to Support a Decision

DeCIIOZIbbkI TheoremDeciion ~kerKS
Prover

instructions to
implement decision

'world'

b, System Oriented Towards Implementation of a Decision

Figure I.Decision Support Versus Implementation



Although this PLANNER application is not oriented towards the direc-

tion or execution of computations of interest to managers, the execution

of robot actions in response to a user's problem is along a similar vein.

That is, each involves a plan, but the plans are off different natures.

One is a plan of computational analysis (i.e., a model) which. when exe-

cuted. results in some data (refer to abilities III and V in [ 2]). The

other is a plan of implementation which, when carried out results in some

change in a 'world' which can be manipul~ated by the theorem proving system

(refer to abilities III and VII in [ 2.)). This contrast is depicted in

Figure 4~. (Recall that PLAN~NER can also supply data to the user via

inferential retrieval, as discussed earlier.) As a final cosmment, notice

that the architecture in Figure 4i could be altered, to allow the decision

maker to either approve or disapprove of the implementation plan devised

by the theorem prover, prior to its execution.



15

2.3 The GPS Approach and STRIPS

A fairly general and abstract approach to problem solving has been

developed by Simon [17). This approach appears in the g~uise of the Gen-

eral. Problem Solver (GPS). The GPS concepts can be easily outlined. al-

though applying them to give an operational system can be quite com-

plicated.

GPS is concerned with three basic elements: states, operators and

goals. A state is simply a situation. Operators permit us to move from

one state to another state, to transform one situation into another

situation. A goal is a desired state. A problem is described in terms

of an existing, initial state, and a goal.

The GPS concept of problem solving is characterized as selecting a

series of operators that will successively move the problem from its

initial state, through intermediate states, to the goal state. Given

any state. it is assumed that a difference can be determined between that

state and the goal state. Operators are selected to reduce the differ-

ence between the current state and the goal state. However. not any

operator can be selected, since for a given state the set of applicable

operators is a subset of the set of all operators. Tf, for example.

the current state has a salesman in Chicago, then the operator to fly

from New York to Albany is not applicable.

One interesting aspect of the GPS approach is that it can be used

recurveively. To explain this suppose that we are in a particular state

(e.g., in Chicago) and when calculating the difference with the goal

state (e.g., in Albany) we notice that a particular operator (e.g.. fly



16

from New York to Albany) if applied, would substantially reduce or elim-

inate the difference. However, to use this particular operator we need :
to be in a certain state (e.g., in New York) which we presently are not

in. Thus we could set up a new goal (e.g., in New York) which would be

to achieve a particular state which would allow the application of the

selected operator (e.g.. fly from New York to Albany). For the solution

of this new problem (e.g., initial state: in Chicago, goal state: in New

York) we can reapply the GFS approach. If a solution were found (e.g.,

fly from Chicago to New York) then we can return to solving our original

problem. During the course of solving our new problem we may have again

had recourse to using GPS in such a recursive fashion (e.g.. fly from

Chicago to Cleveland and then fly from Cleveland to New York).

A description of an implementation of the GPS approach and its use

in solving a number of problems ranging from the cannibal-missionary

problem to symbolic integration appears in 17]. For coimments on the

relationship of the GPS approach to human problem solving see [131. Notice

that the GPS approach involves several of the decision making abilities

presented in C 2). These include the collection of information about

states and the formulation of models (sequences of operators) as a

result of recursively recognizing problems.

The emphasis in GPS is therefore upon the use of the means-end

(operators-goal) approach and recursive problem solving in order to auto-

matically determine a method of solution. The principal outputs 2'f

systems like those reviewed in C 5) are reports such as income statements

or sales forecasts. The principal outputs of systems developed in the

spirit of GPS are solution methods. in terms of operator sequences.



16

from New York to Albany) if applied, would substantially reduce or elim-

inate the difference. However, to use this particular operator we need

to be in a certain state (e.g., in New York) which we presently are not

in. Thus we could set up a new goal (e.g., in New York) which would be

to achieve a particular state which would allow the application of' the

selected operator (e.g.. fly from New York to Albany). For the solution

of this new problem (e.g.. initial state: in Chicago, goal state: in New

York) we can reapply the GPS approach. If a solution were found (e.g.,

fly from Chicago to New York) then we can return to solving our original

problem. During the course of solving our new problem we may have again

had recourse to using GPS in such a recursive fashion (e.g.. fly from

Chicago to Cleveland and then fly from Cleveland to New York).

A description of an implementation of the GPS approach and its use

in solving a number of problems ranging from the cannibal-missionary

problem to symbolic integration appears in 17). For comments on the

relationship of the GPS approach to human problem solving see £133. Notice

that the OPS approach involves several of the decision making abilities

presented in [ 2). These include the collection of information about

states and the formulation of models (sequences of operators) as a

result of recursively recognizing problems.

The emphasis in GPS is therefore upon the use of the means-end

(operators-goal) approach and recursive problem solving in order to auto-

matically determine a method of solution. The principal outputs of,

systems like those reviewed in E5) are reports such as income statements

or sales forecasts. The principal outputs of systems developed in the

spirit of GPS are solution methods. in terms of operator sequences.



17

Nov suppose that ye use the term "state" in the sense of a state of

information (e.g.. economic assumptions) and we take operators to be mod-

ules (e.g., regression. simulations. etc.). Note that a module enables

us to move from one information state (input) to another state (output).

If our goal state is one of having a sales forecast, then a GPS approach

would yield a sequence of operators (a model) that enables us to arrive

at that goal. Incorporation of the GFS approach into a DSS. would there-

fore go a step beyond the BDL system in which the user sequences the oper-

ators. Techniques for incorporating a GPS-like approach into a system which

also executes the sequence of operators are currently being investigated [)4

One implementation of a problem solving system based on the UPS ideas

was developed at Stanford Research Tnstitute [8) and named STRTPS (StanfordI Research Institute Problem Solver). Since the implementation was based

* on using the predicate calculus and theorem proving, we do not examine

STRIPS details here. However, we can sketch out some of its main ideas

in the context of our GPS discussion.

The STRIPS problem domain consists of a robot which must rearrange

objects. navigate through rooms, etc. A state for the robot problem

solver consists of a large number of' facts about positions of the robot

* and objects, about the characteristics of the objects, and about walls

and openings in the rooms which the robot can inhabit. Each STRIPS

operator has a corresponding "action routine" which when executed. causes

the robot to take a certain action. Problem solving consists of finding

a sequence of operators which will transform an initial state into a goal

state.



-In STRIPS, associated with any operator,, there are three lists of

information. A prerequisite list specifies what must be true about a

state before the operator can be applied. The delete and add lists

specify what changes to make in the current state if the operator is

applied, I.e., what facts should be added and which should be deleted.

The language system (LS) in STRIPS allows for the specification

of goal states. Although the language used is predicate calculus, its

statements can be paraphrased into English. An example is "Get boxes

B and C to location A." The STRIPS knowledge system (KS) consists of

a description of the current state of the robot world. These facts

are also represented in terms of the predicate calculus.

The problem processing system (PPS) in STRIPS finds (if possible)

a sequence or operators which permit the goal to be met.* The PPS uses

theorem proving techniques to determine whether a goal is met by the

cretstate. If it is, then no operator sequence needs to be deter-

mined. if it is not, then the GPS notion of 'differences' is used,,

along with the previously mentioned operator lists, to select an opera-

tor that would give a. new current state which is 'closer' to the goal.

The PPS then uses theorem proving techniques again to determine whether

the goal is met by the new current state. This process continues until

a sequence of operators has been found which gives a state that can be

proven to meet the goal.

Heuristic intricacies Involved in the selection of operators appear

In C 8 3. This can be contrasted with PIA1UR, wherein determination of

a sequence of robot actions is guided by the user via the PLUNNM LB.

- it can be further contrasted with the DDL approach of the user being

guided by the system in eventually specifying a sequence of irreducible

steps.



19

2.4 myciN

A very specific and apparently successful consultation system called

MYCIN [63 is intended to help physicians diagnose and decide upon treat-

ments for infectious diseases. Given an initial set of symptoms and basic

information on the patient, the system acts as a consultant by requesting

what it considers to be pertinent data about the patient such as results

of certain laboratory tests. The acquisition of each new bit of data

about a patient serves to influence the next piece of data which the 'con-

sultant' requests from the physician. In this way a selective "data bRse"

is gradually built.

The patient-specific "data base", along with some knowledge about

infections, allows the MYCIN system to suggest certain possible diagnoses

and therapies, each with a likelihood factor. The physician is aided in

the search for a diagnosis by the system's suggestions and by the ability

on the physician's part to request reasons for the proposed diagnosis.

User interaction with MYCIN is via an English-like interface which signi-

ficantly enhances its usability.

Although the features of MYCIN differ somewhat from those of the

previously discussed systems, it too fits the generic description of a

DSS. A consultation session is initiated by the user. but it is perpet-

uated and guided by MYCIN. Thus MYCIN's information collection from a

user via the LS is instigated by the MYCIN PPS (see [61 for examples

of this). in contrast to the three previously described systems, the

MYCIN LS is quite English-like in appearance. However, the user is largely

restricted to asking only one kind of question, namely "What Is the diag-

nosis and therapy?"



20

The PPS endeavors to condition this query by building a patient-

specific "data base" as described earlier, so that the query begins to

look like "What is the diagnosis and therapy for patient A having

history B, symptom C, D and E, lab test results F and G, etc?" This

interactive conditioning process may be characterized as the MYCIN

PFF's problem recognition ability [2].

The exercise of this ability depends upon facts about infections

which are maintained in MYCIN's knowledge system (KS). During the

interactive conditioning of a user's query, the next bit of data to

be collected from a user (to further define or condition the problem)

depends upon information already collected frAm the user (IS) and from

the KS. The patient-specific "data base" which results from inter-

active problem recognition may be considered either as information

internally held within the PPS or as a short-term part of the KS that

is filled in as data is collected from a user.

The KS holds long term (yet modifiable) knowledge concerning in-

fections which exists across many consultation sessions. The patient-

specific inforaiation, which the MYCIN authors call a "data base" exists

only for the consultation session involving that specific patient. A

new patient demands a new patient-specific "data base". In this sense,

a MYCIN "data base" is analogous to the internal representation of a

particular query in systems such as thosc reviewed in r 5 . Both

are comparatively ephemeral.

It is instructive to contrast the MYCIN handling of patient informa-

tion against another conceivable approach which would store all patient

information in the KS on a long term basis. Where the potential patient

population is large, the MYCIN approach is clearly superior, since there



21

would be too much data that is used too infrequently (and which is too

volatile) to permit feasible long term storage. The MYCIN approach is

entirely consistent with the way in which the decision support systems

of £5) handle very short term information. Examples of such short

term information include the assumptions under which some sales fore-

casting model should be executed. We may want to execute the model

assuming a 5% economic growth factor and a moment later we may want to

try a 7% factor. Just as it is not practical to store all patient data

on a long term basis, it is not practical to store all potentially

interesting growth factors on a long term basis. On the contrary they

are supplied by the user as needed through the system's IB.

Even though MYCIN cannot quite be characterized as permitting com-

putational management (recall the matrix of £5)), its approach to decision

support has much to offer in terms of ideas for tDSS development in bus-

iness settings. MYCIN lies in Category L. and its inferential retrieval

is based upon Post's production system [1] The notion of diagnosis

and treatment of human patients can be extended to business firms.

This expanded perspective would see corporate planners as 'physicians'

endeavoring to diagnose and recommend therapies for a firm's 'ills'.

An interesting issue for research is the extent to which the MYCIN

principles can be applied to situations where the patient is a business

firm. This would necessitate a KS that deals not with medic' knowle-'-

but with knowledge about the anatomy, testing procedures, afflictions,

and treatments for a business firm.



22

2.5 GPLAN

The Generalized Planning System (GPLAN). developed at Purdue Univer-

sity tll].is more general than the systems reviewed in [ 5J in terms of

the problem domains it can handle. GPLAN can be tailored to support

decision makers in any of a variety of areas (e.g., inventory management

[l, water quality planning D2]). The intent was not only one of generality.

but also involved an easy-to-use user language, a flexible knowledge system

and a problem processor which could automatically interface a model with

some data in the KS to perform a desired analysis.

The language system (LS) was designed for use by persons who are not

programmers. It is English-like in appearance and with it a user can

direct both data retrieval and computation non-procedurally. When used

for data retrieval GPLAN falls into Category L. When used for directing

computations the system, as currently implemented, falls into Category E.

That is,models are invoked by name and they obtain needed data from the

KS by invoking special report generators.

Part of the system's generality derives from the fact that the LS

syntax remains the same, regardless of the problem domain. The syntax is:

< COMMAND > < FIND CLAUSE > < CONDITIONAL CLAUSE >

The vocabulary does change from one problem domain to another (see [1]

and C23for example). But since the GPLAN problem processor handles

user statements using syntax directed compilation techniques, vocabulary

changes do not drastically affect the PPS.

On the other hand changes in the models to be used do affect the PPS

in several ways. First of all the models are treated as part of the PPS.

So a change in problem domain from inventory management to water quality



23

planning would cause the deletion of inventory management algorithms and

the inclusion of water quality simulation models. There are other models

which remain in the PPS regardless of the problem domain. These are

statistical models, of the sort found in SPSS, which have wide applica-

bility.

The incorporation of a new model into the system affects the LS

vocabulary by adding a new command (e.g., RUN WATER SIMULATION) and it

necessitates other changes in the PPS such as the possible inclusion of

additional report generators and checks to assure that the user's CONDI-

TIONAL ClAUSE fully specifies the assumptions (if any) under which the

model is to be executed. Thus the modeling aspect of GPLAN is its least

general ability. This can be overcome as described in 4 1].

A final aspect of the system which is quite general is its ability to

gather information from the KS (which is a type of data base). The PPS is

unaffected by the problem domain or the way in which problem domain know-

ledge is organized in the KS, having the ability to produce practically

any subset of the data contained in the KS. In 1 3 j it is shown how to

extend the power of data bases for representing knowledge.

.......



24~

3.0 Rationale for the Study of a Generalized Problem Processor

The systems surveyed in this and its companion paper [ 5 J serve to

portray many of the major features and issues pertaining to decision

support systems. The concepts and techniques on which these systems are

founded furnish several of the toolo needed for the development of a

general PPS, that is a single, invariant mechanism, whose code does not

change with the problem domains which it supports. This implies that

such a processor, while possessing various abilities involved in decision

making, must be separated from anything which is domain-specific. The

design of such a processor is the subject of current research.

It is appropriate at this juncture to pause for a consideration of

the advantages of such a generalized problem processor vis-a'-vis domain-

specific processors. Perhaps the most significant attributes of the gen-

eralized approach is the conceptual framework which it affords. This is

particularly important from the pedagogical standpoint. Given a know-

ledge of the general system, one is in a much better position to comprehend

and derive specialized systems than would be the case in the absence of

such knowledge. Observe that possession of this knowledge furnishes a

basis for systematic comparison, contrast and discourse regarding

special casrew ontma o ugs htseiait edtre

Ofcorewdontmatosgettaspcaitbedtre

from their lines of investigation and development. Indeed, the specialist

* is quick to point out that with respect to execution and storage. a

specialized system is almost invariably more efficient than a general

system. it must be remembered, however, that the price for greater opera-

tional efficiency is the forfeit of some degree of flexibility. Where

efficiency is paramount it may be simpler or less costly (more efficient?)

to constrain an existing general system to conform with some standard of



25

operational efficiency than to devise a special system from scratch. In

this connection, it is important to keep in mind the tradeoff between

development costs (which continually rise due to the high labor component)

and execution plus storage costs (which continue their dramatic decrease).

As a topic for research (and as a managerial strategy) there is a

good deal to be said for concentrating on how to improve responses to

needs over time, under changing conditions. In the long run this may

very well be more fruitful than devotion to augmenting one's capabilities

for finding solutions that are optimal at a given moment of time. This

would imply a need for flexible systems that can easily adapt to what has

been learned and to current needs. One is faced with two distinct courses

of action: 1) investment of resources in a system that is optimal until

conditions change. causing deterioration or incapacity; or 2) investment

in a system that is not optimal (that can be mass produced and that is

probably less expensive), but can be readily modified (and perhaps improved)

when conditions change.

Furthermore, in an environment where numerous, diverse specialized

systems are derived from the general, there is an advantage of relative

ease in understanding each since all have been based on the same general

principles. This is contrasted with situations wherein one must learn

several entirely distinct systems which are not derived from a common root.

A further asset acquired from the study of a general system is its poten-

tial for engendering insights that allow what is known in one system to be

translated to others.



26

Oak In an earlier section (1.4) the notions of machine software and

"human software" were compared. Interestingly, this comparison can be

continued with respect to the question of generalization versus special-

ization. So-called idiot savants E 9] studied by psychologists are persons

capable of performing particular mental feats far beyond the capacity of

normal humans, but they are unable to carry on simple conversations or

perform ordinary Jobs. The unusual mental feats performed by these per-

sons, whose IQs fall in the range of 40 to 80, involve memory and prodi-

gious calculations that surpass the abilities of the most brilliant

people 15]. The savant's "software" app-ars to be extremely speciali-

zed, capable of such extreme concentration on a particular problem domain,

that the mental "software" in not available for the wide range of problem

domains addressed by more normal persons [i5. It is left to the reader

to elaborate upon the interesting parallel between human and machine

software with regard to the specialization versus genoralization issue.



27

14.0 Conclusion

The paper began with a generic description of decision support

Systems that was based upon the frameworks, surveys. and classification

schemes of earlier papers 'L 2), [ 5]. The generic description holds that

a DSS has knowledge about a problem domain (a KS) and can accept stated prob-

lems (a IS). In order to solve a stated problem using problem domain

knowledge, there must be a PPS which possesses some of the seven abilities

C 2) involved in decision making.

Several systems were described which fit the generic DSS idea, but

which were not the customary kinds of systems encountered in business

applications. The distinguishing features of each were noted. It is

of interest to speculate about why systems such as MYCIV are not found in

business settings. The ideas and features of such systems certainly

A look attractive, but in viewing management systems [ 5) there is nothing

at this level.

This is, in part, due to the newness of the systems like those

described in this paper. It is also due to the origins of such systems.

PIANNER, STRIPS and MYCIN were developed by workers in the artificial

intelligence field which until recently has dealt mainly with toy

problems. Furthermore, workers in the field typically do not have

business backgrounds. On the other hand, designers of systems such as

those reviewed in [ 5) come predominately from a data base management-

management information systems (DEM-MIrS) background. The potential

application of artificial intelligence techniques in conjunction with

DBM-MIS techniques has yet to be widely recognized or investigated in

the DBM-MIS field.



4 -- ___ ____ -- 28 - -

This presentation is an initial effort at remedying this situation.

Research efforts directed towards the design of decision support systems

that are built upon features and techniques from both traditions deserve

support. Moreover, an investigation of some degree of generality that

goes beyond such systems as OPLAN, is important both as a pedagogical

aid and from a practical standpoint. For implementors or buyers of

decision support systems, the question of precisely what level of generality

is appropriate is neither a trivial problem nor a problem which has been

solved. Nevertheless an understanding of a quite general system should

alert these persons to the various levels of generality which are possible

and it should furnish a repertoire of features and techniques which can

be used to attain the desired degree of generality.



References

[1] R. H. Bonczek, C. W. Holsapple and A. B. Whinston, "Aiding Deci-
sion Makers with a Generalized Data Base Management System",
Decision Sciences, April, 1978.

(21 R. H. Bonczek, C. W. Holsapple and A. B. Whinston, "Computer Based
Support of Organizational Decision Making", Decision Sciences,
April, 1979.

(3] R. H. Bonczek, C. W. Holsapple and A. B. Whinston, "The Integration
of Data Base Management and Problem Resolution", Information
Systems, Vol. 4, No. 2, 1979.

[41 R. H. Bonczek, C. W. Holsapple and A. B. Whinston, "Representing
Modeling Knowledge with First Order Predicate Calculus",
submitted for publication, 1979.

(5) R. H. Bonczek, C. W. Holsapple and A. B. Whinston, "The Evolving
Roles of Models in Decision Support Systems", Decision Sciences,
April, 1980. (forthcoming).

(6] R. Davis, B. Buchanan. E. Shortliffe, "Production Rules as a
Representation for a Knowledge-Based Consultation Program",
Artificial Intelligence, Vol. 8, No. 1, 1977.

[7) G. W. Ernst and A. Newell, GPS: A Case Study in Generality and
Prdblem Solving, Academic Press, New York, 1969.

[8) R. E. Fikes and N. J. Nilsson, "STRIPS: A New Approach to the
Application of Theorem Proving to Problem Solving", Artifi-
cial Intelligence, Vol. 2, 1971.

(9) R. M. Goldenson, Encyclopedia of Human Behavior, Vol. 1, Double-
day, Garden City, New York, 19"0, pp. 592-593.

[10) M. Hemmer, et. al., "A Very Hizh Level Programming Language for
Data Processing Applications", Coamunication of the ACM,
Vol. 20, No. 11. 1977.

11] W. D. Haseman and A. B. Whinston, Introduction to Data Management,
Irwin, Homewood, Illinois, 1977.

[12] C. W. Holsapple and A. B. Whinston, "A Decision Support System
for Area-wide Water Quality Planning", Socio-Economic
Planning Sciences, Vol. 10, 1976.

(13) A Newell and H. A. Simon, Human Problem Solving, Prentice Hall,
Englewood Cliffs, New Jersey, 1972.

(14) E. Post. "Formal Reductions of the General Combinatorial Problem",
American Journal of Mathematics, Vol. 65, 1943.



[15] B. Rimland, "The Autistic Savant", Psychology Today, Vol. 12,
No. 3, 1978.

[16] R.A. Seaberg and C. Seaberg, "Computer Based Decision Systems in
Xerox Corporate Planning, "Management Science, vol 20, no. 4, 1973.

[17] H.A. Simon, "The Heuristic Compiler", in Representation and
Meaning. (ed., H.A. Simon and L. Siklossy), Prentice-Hall,
Englewood Cliffs, New Jersey, 1972.

[18] H.A. Simon, The New Science of Management Decision, Harper & Brothers,
New York, 1960.

[191 M.H. van Emden, "Programming with Resolution Logic", in Machine
Intelligence, Vol. 8, (ed., E.W. Elcock and D. Michie),
Halsted Press, New York, 1977.

[20) T. Winograd, Understanding Natural Language, Academic Press, New
York, 1972, pp. 108-126.

[21] H.K.T. Wong and J. Mylopoulos, "Two Views of Data Semantics",
University of Toronto, December, 1976.


